Solutions to Problem Set 3

1. The critical density is $3H_0^2/8\pi G$. But, $H_0=2.13h\times 10^{-34}$ eV, and $G=1/m_{\rm pl}^2=1/(1.22\times 10^{28}{\rm eV})^2$, so $\rho_c=8.1h^2\times 10^{-11}{\rm eV}^4$. The ratio

$$\frac{\rho_{\Lambda}}{3H^2/(8\pi G)} = (\rho_{\Lambda}/\rho_c)_0 \left(\frac{H_0}{H}\right)^2$$

where subscript 0 means evaluate today, where it is assumed to be 0.7. Again, by assumption, the universe is forever radiation dominated (clearly not true today, but a good approximation early on), so $H/H_0 = a^{-2}$. The temperature also scales as a^{-1} , so $H/H_0 = (T/T_0)^2$ with $T_0 = 2.7$ K = 2.3×10^{-4} eV. So,

$$\frac{\rho_{\Lambda}}{3H^2/(8\pi G)} = 0.7 \left(\frac{T_0}{T}\right)^4.$$

At the Planck scale, $T_0/T = 2.3 \times 10^{-4}/1.22 \times 10^{28}$, so

$$\frac{\rho_{\Lambda}}{3H^2/(8\pi G)} = 9 \times 10^{-128}.$$

This is the so-called fine-tuning problem: For the cosmological constant to be important today, it had to have been fine-tuned to an absurdly small value at early times. It's a deep problem.

2. We need to do the integral

$$t_0 = \frac{1}{H_0} \int_0^1 \frac{da}{a} \left[\Omega_{\Lambda} + \frac{1 - \Omega_{\Lambda}}{a^3} \right]^{-1/2}$$

for $\Omega_{\Lambda} = 0.7$ and 0. The latter case can be done analytically:

$$\int_0^1 \frac{da}{a} a^{3/2} = \frac{2}{3}.$$

So $t_0 = 2/3H_0 = 0.67 \times 10^{10} h^{-1}$ yrs. When Ω_{Λ} is not zero, the integral needs to be done numerically. I find

$$\int_0^1 \frac{da}{a} \left[0.7 + \frac{0.3}{a^3} \right]^{-1/2} = 0.96.$$

So for fixed Hubble constant, a cosmological constant universe is older than a matter dominated one, older by a factor of .96/.67 = 1.43. For h = 0.7, a cosmological constant

universe has an age of 14 billion years, in accord with other observations of the age of the universe.

- **3.** (a) To get from Kelvin to eV, use $k_B = \text{eV}/(11605K)$. So $2.728\text{K} \to k_B 2.728\text{K} = (2.728/11605) \text{ eV}$. Or $2.35 \times 10^{-4} \text{ eV}$.
 - (b) Since $T = 2.35 \times 10^{-4} \text{ eV}$,

$$\rho_{\gamma} = \frac{\pi^2 T^4}{15} = 2 \times 10^{-15} \text{eV}^4.$$

To get this in g cm⁻³, first divide by $(\hbar c)^3 = (1.97 \times 10^{-5} \, \text{eV cm})^3$ to get $0.2625 \, \text{eV cm}^{-3}$. Then to change from eV to grams, remember that the mass of the proton is either $1.67 \times 10^{-24} \, \text{g}$ or $0.938 \times 10^9 \, \text{eV}$, so $1 \, \text{eV} = 1.78 \times 10^{-33} \, \text{g}$. Therefore, $\rho_{\gamma} = 4.67 \times 10^{-34} \, \text{g cm}^{-3}$.

- (c) We have parametrized $H_0=100h\,\mathrm{km}\,\mathrm{sec}^{-1}\,\mathrm{Mpc}^{-1}$, or using the fact that one Mpc is equal to $3.1\times10^{19}\,\mathrm{km}$, $H_0=3.23h\times10^{-18}\,\mathrm{sec}^{-1}$. To get this into inverse cm, divide by the speed of light, $c=3\times10^{10}\,\mathrm{cm}\,\mathrm{sec}^{-1}$; then $H_0=1.1h\times10^{-28}\,\mathrm{cm}$. Or $H_0^{-1}=9.3h^{-1}\times10^{27}\,\mathrm{cm}$.
- (d) To get the Planck mass $(1.2 \times 10^{28} \text{ eV})$ into degrees Kelvin, multiply by $k_B^{-1} = 11605 \text{K/eV}$; then $m_{\text{Pl}} = 1.4 \times 10^{32} \text{ K}$. To get it into inverse cm, divide by $\hbar c = 1.97 \times 10^{-5} \text{ eV}$ cm to get $m_{\text{Pl}} = 6.1 \times 10^{32} \text{ cm}^{-1}$. To get this is units of time, multiply by the speed of light to get $m_{\text{Pl}} = 6.1 \times 10^{32} \times 3 \times 10^{10} \text{ cm sec}^{-1}$, or $m_{\text{Pl}} = 1.8 \times 10^{43} \text{ sec}^{-1}$.

4.

$$\vec{A} \cdot \vec{B} = A_i B_i$$

$$\vec{A} \cdot \vec{B}\vec{C} \cdot \vec{D} = A_i B_i C_j D_j$$

I.e. distinuish the dummy index in one dot product from the one in the other.

$$\vec{\nabla} f = \frac{\partial f}{\partial x_i}$$

$$\vec{\nabla} \cdot \vec{A} = \frac{\partial A_i}{\partial x_i}$$